The Vibrational Spectra of Compounds containing the Dimethylaminogroup. Part II. $\dagger \mathrm{p}$ - NN -Dimethylaminobenzonitrile and the N -Methyltoluidines

By P. N. Gates, D. Steele,* and R. A. R. Pearce, Department of Chemistry, Royal Holloway College, University of London, Englefield Green, Surrey
K. Radcliffe, Basic Research Laboratory, Ilford Limited, Ilford, Essex

Abstract

The i.r. and Raman spectra of p-chlorobenzonitrile and $p-N N$-dimethylaminobenzonitrile have been recorded in the range $4000-10 \mathrm{~cm}^{-1}$. The fundamental vibrational frequencies of these systems have been computed. On the basis of these calculations and by analogy with related molecules the observed spectral bands have been assigned. It is shown that several modes exist which might be characteristic of the dimethylamino-group and that considerable mixing occurs in some instances between the modes of the ring and the amino-group. Some tentative conclusions concerning the structure of the $\mathrm{C}_{6}-\mathrm{NC}_{2}$ skeleton are made. A survey of the spectra of the N -methyl-toluidines and -anilines has been made which supports the identification of the characteristic bands of the aromatic $-\mathrm{NMe}_{2}$ and aromatic-NHMe entities.

There have been few detailed studies of the vibrational spectra of compounds containing the NMe_{2} group. A number of i.r. absorption bands in the $3000 \mathrm{~cm}^{-1}$ region have been suggested to be characteristic of the grouping ${ }^{1-3}$ and some attempts have been made to identify further characteristic bands in the fingerprint region. ${ }^{-6}$

[^0]It might be expected that when a complex grouping A, such as NMe_{2}, is attached to a common large grouping of nuclei, B, with a fixed geometry in a variety of molecules, then the variation in the vibrational frequencies associated with A would be much less than if B were varied. For this reason we have studied the NMe_{2} and the NHMe

[^1]groupings attached directly to aromatic six-membered rings.

Two problems arose in the interpretation: (a) there appears to be considerable uncertainty concerning the conformation of the NMe_{2} group in this environment. X-Ray crystallography has established that in NN -di-methylamino- p-nitrobenzene the $\mathrm{C}_{6}-\mathrm{NC}_{2}$ skeleton is planar in the solid state and only slightly rotated from the plane of the aromatic ring.? On the basis of the u.v. spectra the NC_{2} skeleton of $N N$-dimethylaniline was suggested to be in the plane of the ring ${ }^{8}$ but the evidence for this is far less convincing. An electrondiffraction study of $N N$-dimethylaniline in the vapour phase ${ }^{9}$ led to the conclusion that the tertiary amine skeleton was non-planar with CNC angles of ca. 116° which is intermediate between those required for planar and tetrahedral configurations. Aniline itself is definitely non-planar. ${ }^{10,11}$ An estimate of the angle between the ring -N bond and the NH_{2} plane of $c a .45^{\circ}$ has been deduced from the electronic spectrum. ${ }^{11}$ If these estimates are correct they imply that the structure is nearer tetrahedral in aniline than in its dimethyl derivative. We suggest that the difference in the vibrationl spectra of $N N$-dimethylaniline, and also those of the $N N$-dimethyltoluidines, from the spectra of the p-nitroderivative, imply different conformations. ${ }^{12}$ (b) Despite the enormous literature on the spectra of aromatic derivatives there seem to be many uncertainties in the assignment of aromatic ring modes when the substituents consist of more than one atom. This makes the interpretation of the spectra arising from the NMe_{2} group much more complex. We aim to show that this problem arises from the severe mixing of the phenyl distortions with those of the complex substituent groupings.
In this paper we present an analysis of the spectra of p-chlorobenzonitrile and p-NN-dimethylaminobenzonitrile. In addition we summarise some of the results of an investigation of the spectra of aniline and ortho-, meta-, and para-toluidines and their N-methyl and $N N$-dimethyl derivatives. As these results are largely in accord with the earlier work of Katritzky and Jones ${ }^{5}$ and since the spectra of these compounds have all been published in varying degrees of detail, we shall not reproduce our data here. Details of the spectra are available on request.

EXPERIMENTAL

All compounds were the highest purity commercial products from BDH, Koch-Light, or Emmanuel. Recrystallisation of p-chlorobenzonitrile and p - $N N$-dimethylaminobenzonitrile produced no spectral change and therefore most studies were carried out on the commercial samples. All the anilines and toluidines were distilled in vacuo before use. A zone-refined sample of $N N$-dimethyl- p-toluidine was kindly given to us by Professor R. A. Shaw. Spectra from this sample were identical to those from our distilled

7 T. C. W. Mak and J. Trotter, Acta Cryst., 1965, 18, 68.
${ }^{\text {s }}$ H. B. Klevens and J. R. Platt, J. Amer. Chem. Soc., 1949, 71, 1714.
' L. V. Vilkov and T. P. Timasheva, Doklady Akad. Nauk S.S.S.R., 1965, 161, 351.
sample. Measurements of the i.r. spectra are summarised in Table 1. Raman spectra were obtained on a Cary 81 spectrometer with a Spectra Physics helium-neon 50 mW C.W. laser ($6328 \AA$) for excitation. Samples (liquid and solid) were contained in Pyrex capillary tubes.

Table 1

Range/ cm^{-1}	Sample state	Spectrometer
10-200	Nujol mull or CCl_{4} soln.	Grubb-Parsons 'Cube' interferometer
150-300	Nujol mull or CCl_{4} soln.	Multigrating evacuated spectrometer built in this department
260-400	Nujol mull or CCl_{4} soln.	Perkin-Elmer 457 spectrometer
400-4000	KBr disc or CCl_{4} soln.	Unicam SP 100 or PerkinElmer 337 spectrometer

Table 2
The molecular parameters and force constants assumed in the calculations

$$
\begin{array}{rlrl}
\text { Aromatic } \mathrm{C}--\mathrm{C} & =1.40 \AA & \mathrm{~N}-\mathrm{Me}=1.46 \AA \\
\text { Aromatic } \mathrm{C}-\mathrm{H} & =1.08 \AA & \mathrm{C}-\mathrm{H}=1.08 \AA \\
\text { Aromatic } \mathrm{C}-\mathrm{N} & =1.40 \AA & \mathrm{C} \equiv \mathrm{~N} & =1.16 \AA \\
\mathrm{C}-\mathrm{CN} & =1.42 \AA & \mathrm{C}-\mathrm{Cl}=1.70 \AA
\end{array}
$$

All ring angles were taken as 120° and all angles around the carbon of the methyl groups taken as tetrahedral ($109^{\circ} 28^{\prime}$). The atomic masses of carbon, hydrogen, nitrogen, and chlorine, were taken as $12 \cdot 011,1 \cdot 008,14 \cdot 0$, and $35 \cdot 5$ a.m.u. respectively.

Diagonal force constants/ $\mathrm{N} \mathrm{m}^{\mathbf{- 1}}$		Interaction force constants $\mathrm{N} \mathrm{m}^{-1}$	
$\mathrm{C} \equiv \mathrm{N}$	1760	$\mathrm{R}-\mathrm{R}(o=-m=p)$	48
Ring-CN	600	$\mathrm{R}_{\boldsymbol{i}}-\beta_{i}(\mathrm{H})$	35
R (aromatic $\mathrm{C}=\mathrm{C}$)	687	$\mathrm{R}_{i}-\alpha_{i}$	$31 \cdot 6$
Aromatic $\mathrm{C}-\mathrm{H}$	$512 \cdot 5$	AN--NMe	60
Ring- NMe_{2}	600	$\mathrm{NMe}-\mathrm{NMe}$	64
$\mathrm{C}-\mathrm{Cl}$	370	NMe- δ	30
$\mathrm{N}-\mathrm{Me}$	460	$\alpha_{i}-\alpha_{i+1}$	-5
Methyl C-H	495	$\alpha_{i}-\beta_{i+1}(\mathrm{H})$	$4 \cdot 2$
α (ring CCC)	61.9	$\delta_{i}-\delta_{i+1}$	-3
$\beta(\mathrm{H})$	88.1	$\beta_{i}(\mathrm{H})-\beta_{i+1}(\mathrm{H})$	1.8
β (CN)	51	$\beta_{i}(\mathrm{H})-\beta_{i+2}(\mathrm{H})$	-1.9
$\beta(\mathrm{N})$	51	$\beta_{i}(\mathrm{H})-\beta_{i+3}(\mathrm{H})$	-2.7
$\theta(\mathrm{HCH})$	44	$\gamma_{i}(\mathrm{H})-\gamma_{i+1}(\mathrm{H})$	$1 \cdot 23$
$\delta(\mathrm{HCN})$	61	$\gamma_{i}(\mathrm{H})-\gamma_{i+2}(\mathrm{H})$	-1.3
$\varepsilon(\mathrm{C}-\mathrm{C} \equiv \mathrm{N})$	30	$\gamma_{i}(\mathrm{H})-\gamma_{i+3}(\mathrm{H})$	$-1 \cdot 15$
$\gamma(\mathrm{C}-\mathrm{C} \equiv \mathrm{N})$	30	$\gamma_{i}(\mathrm{H})-\phi_{i}$	$1 \cdot 25$
$\boldsymbol{\gamma}(\mathrm{H})$	26.5	$\gamma_{i}(\mathrm{Cl})-\phi_{i}=\gamma_{i}(\mathrm{C})-\phi_{i}$	
$\gamma(\mathrm{Cl})$	$12 \cdot 3$, $=\gamma_{i}(\mathrm{~N})-\phi_{i}$	-0.3
$\gamma(\mathrm{N})$	15.5	$\phi_{i}-\phi_{i+1}$	-0.7
$\gamma(\mathrm{C} \equiv \mathrm{N})$	$15 \cdot 1$		
χ	$\begin{gathered} 45 \\ 3 \cdot 6 \end{gathered}$		

Deformation co-ordinates of the angles ABC are multiplied by the bond length AB. $\beta(\mathrm{X})$ Co-ordinates are multiplied by the CX bond lengths. The interaction force constants involving $\gamma(\mathrm{X})$ and $\beta(\mathrm{X})$ co-ordinates of the type $\beta_{i}(\mathrm{X})-$ $\beta_{i+1}(\mathrm{H})$ are obtained from the corresponding $\gamma(\mathrm{H})$ and $\beta(\mathrm{H})$ constants by multiplication with the ratio of the square-roots of the CH to CX bond lengths. All $\alpha-\beta(\mathrm{X}), \mathrm{R}-\beta(\mathrm{X}), \gamma(\mathrm{X})-$ $\gamma(\mathrm{H})$, and $\beta(\mathrm{X})-\beta(\mathrm{H})$ are included.

RESULTS AND DISCUSSION

Calculations.-The computational procedure has been described. ${ }^{13}$ The bond lengths and interbond angles adopted were as shown in Table 2. In computing the

[^2]potential energy distribution (p.e.d.) we have ignored the contribution from off-diagonal force constant elements.

For p-chlorobenzonitrile, the in-plane frequencies were calculated by use of a force field due to Duinker which was derived from a study of chlorobenzenes. ${ }^{14}$ Out-ofplane force constants for the substituted aromatic ring system were taken from the 15 -parameter field for chlorobenzenes given in Table 3 of ref. 15. For the ringsubstituent out-of-plane deformation it was assumed that the force required for a unit angular displacement is the same as for a Cl substituent. The latter approximation is necessary owing to lack of reliable force constants for these substituents and is justified elsewhere. ${ }^{15}$ For the NMe_{2} group the same force constants as those used in Part I ${ }^{16}$ were taken. As in Part I the force constants associated with the methyl group are those due to King and Crawford. ${ }^{17}$

Definition of internal displacement co-ordinates
Some co-ordinates are defined in the Figure. Other definitions used are $\gamma(\mathrm{X})$, out-of-plane deformation of a CX bond from a planar system (I); $\beta(\mathrm{X})$, corresponding

in-plane deformation of the CX bond from the internal bisector of the ring; ϕ Bell's torsion co-ordinate; ${ }^{18}$ $\mathrm{A}-\mathrm{CN}$, aromatic-carbon to nitrile carbon stretch; A-N, aromatic-carbon to nitrogen stretch; and $\varepsilon(\mathrm{CCN})$ and $\gamma(\mathrm{CCN})$, angular deformations of the $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ system in-the-plane and out-of-the-plane of the aromatic ring respectively. A value of $60 \mathrm{~N} \mathrm{~m}^{-1}$ was chosen for the ring- $\mathrm{N}-\mathrm{NMe}$ interaction constant. This would be expected to be similar to the $\mathrm{NMe}-\mathrm{NMe}$ interaction constants. For the $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ grouping the best available guide to the force constants appears to be MeCN. From

[^3]the work of Nakagawa and Shimanouchi ${ }^{19}$ the force constants of the angular deformations of the $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$, both in-the-plane and out-of-the-plane of the aromatic ring, were taken as $30 \mathrm{~N} \mathrm{~m}^{-1}$, the value for MeCN . Conjugation to the aromatic ring would be expected to reduce the $\mathrm{C} \equiv \mathrm{N}$ stretching force constant from its value in MeCN . An arbitrary value of $1760 \mathrm{~N} \mathrm{~m}^{-1}$ was chosen compared with the value of $1860 \mathrm{~N} \mathrm{~m}^{-1}$ for the aliphatic nitrile. Even this reduction is clearly too small as the computed $\nu \mathrm{C} \equiv \mathrm{N}$ remains about 3% high. This suggests that the constant is still high by $c a .10 \%$. Such a change would have a negligible effect on other frequencies.

Three different models were tried for the calculation of the frequencies of NN -dimethylaminobenzonitrile: (i) a coplanar arrangement of the NC_{2} skeleton and the aromatic ring ($C_{2 v}$ point-group); (ii) a pyramidal distribution of bonds (tetrahedral bond angles) about the nitrogen atom while retaining a plane of symmetry perpendicular to the ring (C_{s} point-group). In both (i) and (ii) out-of-plane aromatic angular deformations were not included in the calculation; (iii) the same as model (ii) but with out-of-plane ring deformations included.
p-Chlorobenzonitrile was assumed to have $C_{2 v}$ symmetry. It is assumed here that the z-axis is coincident with the C_{2} axis and the x-axis is perpendicular to the molecular plane. The in-plane vibrational species are then a_{1} and b_{2}.

Computed and observed spectral data for p-chloroand p-NN-dimethylamino-benzonitriles are in Tables 3 and 4 respectively.
p-Chlorobenzonitrile.-The Raman spectrum of p chlorobenzonitrile has been reported by Kohlrausch and Pongratz. ${ }^{20}$ A number of discrepancies occur between our results and these early data, particularly at small frequency shifts, but many of Kohlrausch's data are substantiated. The i.r. spectrum has been reported by two groups. ${ }^{21,22}$ The spectra agree well though our interpretations differ.

The average discrepancy between our calculated and observed frequencies is $13 \mathrm{~cm}^{-1}$, the largest difference being only $32 \mathrm{~cm}^{-1}$. As most of the assignments are known beyond reasonable doubt, the good agreement between calculated and observed frequencies yields confidence in the use of the field in the vibrational calculations on dimethylaminobenzonitrile. There is some uncertainty concerning the b_{1} and a_{2} modes near $960 \mathrm{~cm}^{-1}$. Two weak absorption bands (at 952 and $963 \mathrm{~cm}^{-1}$) are assigned respectively to these modes. Comparison with the calculations suggests that the higher frequency is the a_{2} mode absorbing in violation of the selection rules. The combination band arising from these $\gamma(\mathrm{H})$ vibrations, which always appears with

19 I. Nakagawa and T. Shimanouchi, Spectrochim. Acta, 1962, 18, 513.
${ }_{20}$ K. W. F. Kohlrausch and A. Pongratz, Monatsh., 1935, 65, 199.
${ }_{21}$ H. W. Wilson and J. E. Bloor, Spectrochim. Acta, 1965, 21, 45.
${ }^{22}$ C. Garrigou-Lagrange, J. M. Lebas, and M. L. Josien, Spectrochim. Acta, 1958, 12, 305.
reasonable intensity, ${ }^{23}$ is at $1915 \mathrm{~cm}^{-1}$, in perfect agreement with the frequency sum. The two highest a_{2} modes give rise to a further combination band near 1780 cm^{-1} (observed at $1778 \mathrm{~cm}^{-1}$). If we take the $963 \mathrm{~cm}^{-1}$ band as the a_{2} mode then the second $\gamma(\mathrm{H}) a_{2}$ mode is placed at $813 \mathrm{~cm}^{-1}$ (calculated at $826 \mathrm{~cm}^{-1}$). No assignment was possible for the lowest a_{2} mode. These

Table 3
Observed and calculated vibrational frequencies $/ \mathrm{cm}^{-1}$ of p-chlorobenzonitrile

Observed ${ }^{\text {a }}$			Assignment ${ }^{\text {b }}$
I.r.	Raman	Calculated	
116w		97	b_{1}
163 m	148s	151	b_{2}
250w	250 vs	237	b_{1}
	303s	300	b_{2}
348w	350vs, p	354	a_{1}
		407	a_{8}
440w	443 vs	419	b_{1}
	521w	542	b_{1}
542 s	546 vs	510	b_{2}
587 s	590w	604	a_{1}
	642 vs	$\{646$	b_{2}
	642vs	¢659	b_{1}
704w	705w		$116+587\left(b_{1}+a_{1}\right)$
779 ms	$\begin{aligned} & 779 \mathrm{vs} \\ & 806 \mathrm{~m} \end{aligned}$	797	$\stackrel{a_{1}}{2} \times a_{2}$
828 vs		818	b_{1}
$813{ }^{\text {c }}$		826	a_{2}
880w			$2 \times 440\left(b_{1}+b_{1}\right)$
952w		951	b_{1}
963w		964	a_{2}
1016s	1020w	1033	a_{1}
1090vs	1090vvs, p	1093	a_{1}
1115 m		1100	b_{2}
1130w			$350+779\left(a_{1}+a_{1}\right)$
1176 ms	1176vs,p $\}$	1173	
1196 m	$1197 \mathrm{vs}, \mathrm{p}$ \}	1173	$\left\{546+642\left(b_{1}+b_{1}\right)\right.$
1260 m		1241	a_{1}
1280 m		1284	b_{2}
1304 m	1305w	1290	b_{2}
1400s		1382	b_{2}
1485vs	1484w	1478	a_{1}
1498 m			
1583sh	1580sh	1568	a_{1}
1594s	1592 vvs , p	1571	b_{2}
1778w			$963+813\left(a_{2}+a_{2}\right)$
1915w			$963+952\left(a_{2}+b_{1}\right)$
2222 s	2230vvs, p	2298	a_{1}
	N	3070	b_{2}
	N	3070	b_{2}
	N	3072	a_{1}
	N	3073	a_{1}

a v, Very; s, strong; m, medium; w, weak; p, polarised; dp , depolarised; sh, shoulder; N , no measurement. ${ }^{\circ}$ The 33 fundamental vibrations are distributed among the species of the $C_{2 v}$ point-group as follows: $12 a_{1}+11 b_{2}$ (in-plane) + $3 a_{2}+7 b_{1}$ (out-of-plane). c Assigned from $\gamma \mathrm{CH}$ combination bands.
assignments differ only in small details from those of Garrigou-Lagrange, Lebas, and Josien. ${ }^{22}$ We did not observe an absorption band at $674 \mathrm{~cm}^{-1}$ as reported by these authors. We assume that the intense Raman band at $642 \mathrm{~cm}^{-1}$ is due to both b_{1} and b_{2} fundamentals. It is possible that one of these fundamentals gives rise to the weak Raman and i.r. bands at $704 \mathrm{~cm}^{-1}$. The principal

[^4]difference is in our assignment of the 1197 and $1176 \mathrm{~cm}^{-1}$ pair of bands as a Fermi resonance doublet. Following the calculations we prefer a greater spread between the a_{1} frequencies and choose the $1260 \mathrm{~cm}^{-1}$ band, though much weaker, as the second a_{1} fundamental. In this way we also differ from Wilson and Bloor. ${ }^{21}$

In agreement with Garrigou-Lagrange, ${ }^{24}$ KahanePaillous, ${ }^{25}$ and Jakobsen ${ }^{26}$ the in-plane $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ deformation is identified with the intense absorption near 540 cm^{-1}. This is in accord with the present calculations and with the high i.r. and Raman intensity associated with this frequency. The high i.r. intensity in particular makes its assignment as a ring mode, as suggested by Green ${ }^{27}$ (for the analogous band of benzonitrile) and by Wilson and Bloor ${ }^{21}$ less attractive. We tentatively assign the b_{1} ring mode to the weak Raman band at $521 \mathrm{~cm}^{-1}$. Another assignment on which we differ from Wilson and Bloor is in the higher a_{2} and b_{1} frequencies. They assign $968 \mathrm{~cm}^{-1}$ as a b_{1} mode and correlate the a_{2} mode with the $880 \mathrm{~cm}^{-1}$ band. On the basis of our calculations this seems to be very low (to obtain agreement between calculated and observed frequencies would necessitate reduction of all force constants by 17% or a correspondingly large change in selected constants) and also leads to difficulties in interpreting the combination bands.

Benzonitrile and perdeuteriobenzonitrile have been studied by Jakobsen. ${ }^{26}$ On the basis of mode sensitivity to substituent in the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{X}$ and $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{X}$ series, the $\gamma(\mathrm{C}-\mathrm{C} \equiv \mathrm{N})$ mode was assigned at $160 \mathrm{~cm}^{-1}$.

The calculated p.e.d. for modes in this frequency range for p-chlorobenzonitrile and for the p - $N N$-dimethylaminobenzonitrile show a most surprising difference. For the former molecule the mode calculated at $151 \mathrm{~cm}^{-1}$ is $87 \% \gamma(\mathrm{CCN})$ and yet in the dimethylamino-compound mixing is so strong with distortions of the NMe_{2} group that in no vibration does $\gamma(\mathrm{CCN})$ contribute more than 9% to the total potential energy. The band calculated to be at $180 \mathrm{~cm}^{-1}$ is that which contains 9%. As is seen from Table 3 it also contains 17% of the associated $\gamma(\mathrm{C})$ motion; 17% of ring torsion and the bulk of the remainder of the potential energy is associated with the NMe_{2} group. The extent of the difference is very surprising but has survived a careful rechecking.
p-NN-Dimethylaminobenzonitrile.-Despite the large number of published vibrational studies of para-substituted aromatic molecules, it is still very difficult to predict the intensity and position of the aromatic bands for new systems. Conversely it is very difficult to be certain of the identification of the aromatic bands in the spectra of complex systems. The assignments presented are based on (a) analogy with spectra of simple aromatic systems; (b) the calculations; and (c) analogy with spectra of $N N$-dimethylaniline, N-methylaniline, and the corresponding toluidines. (a) and (c) serve to identify the major 'characteristic' bands of the aromatic ring and the NMe_{2} group respectively, whilst (b) helps to

[^5]Table 4
Observed vibrational bands and calculated frequencies $/ \mathrm{cm}^{-1}$ of $p-N N$-dimethylaminobenzonitrile. Model (i) assumes a planar ring $-\mathrm{NC}_{2}$ system. Model (ii) assumes tetrahedral angles about the nitrogen, but otherwise with maximum symmetry. Model (iii) is as model (ii) but includes the out-of-plane aromatic deformations, whereas models (i) and (ii) do not. In the column of Raman bands figures in parentheses denote measured depolarisation ratios

Observed bands $/ \mathrm{cm}^{-1 a} \quad$ Calculated frequencies $/ \mathrm{cm}^{-1}$
I.r.

I.r. (solution	Raman (solid)
CCl_{4} or CS_{2})	
N	N
N	N
N	N
N	N
N	N
N	N
N	N
N	N
N	N
N	N
2220 vs	2210 vs
1602 s	$1602 \mathrm{vs}, \mathrm{dp}$
	$1560 \mathrm{~m}, \mathrm{dp}$
1527 s	$1528 \mathrm{~m}(0.5)$
	1488 p
1450 ms	$1448 \mathrm{~ms}, \mathrm{dp}$

by use of a simplified $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{XY}$ model, ${ }^{29}$ but this has proved inadequate for the present purposes.

As mentioned earlier we have also made an empirical study of N-methyl-toluidines and -anilines. In these systems a number of strong spectral features are seen which are not obviously correlated with the aromatic ring modes. These appear to be characteristic of the N -methylamino- and $N N$-dimethylamino-entities attached to an aromatic framework. We tabulate these in Table 5 where we have, for convenience, attached labels $d A$ to

CH bending) motion. The mode character is very mixed but it is probable that the considerable intensity arises primarily from the ring -N stretching motion (ca. 23%).

The methyl deformation modes near 1450 and 1420 cm^{-1} are well known and need no further discussion. In addition to these, two methyl torsions and six CH stretching modes, there will be ten further fundamental modes associated with a $\mathrm{Me}_{2} \mathrm{NX}$ unit, three of which will lie below $500 \mathrm{~cm}^{-1}$. Of the seven remaining higherfrequency modes we have located six (labelled $d A$ to $d F$).

Table 5
Characteristic bands $\left(\mathrm{cm}^{-1}\right)$ of the NMe_{2} and NHMe groups; letters following frequencies denote i.r. and Raman band strengths, respectively. (p) Indicates that the Raman band is polarised, (NI) means that no polarisation measurement was made
NMe_{2} Group

Mode label	$N N$-Dimethylaniline	$N N$-Dimethyl-m-toluidine	$N N$-Dimethyl-p-toluidine	$N N$-Dimethyl-o-toluidine
$d A$	$1346 \mathrm{vs}, \mathrm{s}(\mathrm{p})$	$1350 \mathrm{vs}, \mathrm{ms}$ (p)	$1343 \mathrm{vs}, \mathrm{m}$ (p)	1310s, br,m(NI)
$d B$	$1193 \mathrm{~s}, \mathrm{~s}(\mathrm{p})$	$1227 \mathrm{~s}, \mathrm{~s}$ (p)	$1190 \mathrm{~m}, \mathrm{vs}(\mathrm{p})$	$1203 \mathrm{~m}, \mathrm{~s}(\mathrm{NI})$
${ }^{\text {d }}$ C	1160s, vs(p)	1175 s ,m(p)	$1160 \mathrm{~s}, \mathrm{~s}(\mathrm{p})$	1152 s ,coincidence
$d D$	1130 m , w	$1130 \mathrm{~m}, \mathrm{wbr}(\mathrm{p})$	1129 s , m	$1105 \mathrm{~s}, \mathrm{w}(\mathrm{NI})$
$d E$	1062s, -	1059 s ,	1058s, -	1049, coincidence
$d F$	946s,s(p)	958s, m(p)	947s,m(p)	945s, w(NI)
NHMe Group				
Mode label	N-Methylaniline	N-Methyl-m-toluidine	N-Methyl- p-toluidine	N-Methyl-o-toluidine
$m A$	$1313 \mathrm{vs}, \mathrm{s}(\mathrm{NI})$	$1328 \mathrm{vs}, \mathrm{m}(\mathrm{NI})$	1317s,m(p)	$1319 \mathrm{~s}, \mathrm{~s}(\mathrm{NI})$
$m B$	$1260 \mathrm{~s}, \mathrm{~m}$ (NI)	coincidence	1261s,w(p)	1267, coincidence
$m C$	$1178 \mathrm{~s}, \mathrm{~s}(\mathrm{NI})$	1182 vs , w(NI)	$1183 \mathrm{~s}, \mathrm{vs}(\mathrm{p})$	1191w, vs(NI)
$m D$	$1150 \mathrm{~s}, \mathrm{~s}(\mathrm{NI})$	$1168 \mathrm{vs}, \mathrm{m}(\mathrm{NI})$	$1152 \mathrm{~s}, \mathrm{~m}(\mathrm{p})$	$1169 \mathrm{~s}, \mathrm{~s}(\mathrm{NI})$
$m E$	1070s,w(NI)	1070 s	$1061 \mathrm{~m}, \mathrm{mw}$ (p)	1068m,m(NI)

$d F$ for the modes associated with the dimethylaminoentity and $m A$ to $m E$ for those associated with the methylamino-group.

The analogous bands of $p-N N$-dimethylaminobenzonitrile are easily recognised (Table 6). In the case of

Table 6

Comparison of the characteristic bands of the NMe_{2} group (as derived from the NN -dimethylaniline and toluidines) with the observed and calculated bands of $N N$ dimethylaminobenzonitrile

Designation ${ }^{a}$	Frequency range $/ \mathrm{cm}^{-1}$ in $N N$-dimethylaniline	Activity	$\begin{gathered} \text { Frequencies/ } \\ \mathrm{cm}^{-1} \text { in } \\ \mathrm{Me}_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CN} \end{gathered}$	
			Obs.	Calc. (model
	toluidines	Raman	(in soln.)	iii)
$d A$	1350-1300	vs; m-s,p	1369vs; ms,p	1361
$d B$	1230-1190	$\mathrm{m}-\mathrm{s} ; \mathrm{vs}-\mathrm{s}, \mathrm{p}$	1180s; vs, p	1174
$d C$	1180-1150	s-w; vs-w, p	1135w; -	1113
$d D$	1130-1100	m; w-vw	1122w; -w	1173
$d E$	ca. 1058	m -s; -	1062 ms ; -	994
$d F$	960-940	$\mathrm{s} ; \mathrm{m}-\mathrm{s}, \mathrm{p}$	944 ms ; w,p	945

band $d A$ the frequency is significantly higher than in the toluidines and is overlapping the methyl umbrella region. It is identified however by the considerable intensity of the absorption band and by the high degree of polarissation of the Raman band.

On the basis of the potential energy distribution calculations with use of model (iii) the nature of the modes can be seen from Table 4. It is striking that band $d A$ is calculated to contain 24% of the β (in-plane aromatic

Katritzky and Jones ${ }^{5}$ assigned the ring -N stretching vibration near $1350 \mathrm{~cm}^{-1}$ and Ritschl and Künkel ${ }^{6}$ correlated the frequency variations of this mode with the Hammett σ functions of the ring substituents for various substituted NN -dimethylanilines. Our calculations confirm that this mode contains the highest proportion of potential energy arising from stretching of the ring- N bond, albeit only 23%. On the basis of the calculations the mode is of a highly mixed character with 24% of β (ring CH) deformation and 29% of methyl HCH and HCN deformations. Three other modes of the A^{\prime} species, the two highest aromatic ring vibrations near 1600 and $1530 \mathrm{~cm}^{-1}$ and a mode near $660 \mathrm{~cm}^{-1}$, also contain signicant contributions from the ring -N stretching motion.

The symmetric and antisymmetric $\mathrm{N}-\mathrm{Me}$ stretching modes have been identified ${ }^{5}$ near 950 and $1050 \mathrm{~cm}^{-1}$ respectively. The band at $946 \mathrm{~cm}^{-1}$, assigned as the symmetric $\mathrm{N}-\mathrm{C}_{2}$ stretch, is surprisingly weak in the Raman. However no more probable candidate appears within $150 \mathrm{~cm}^{-1}$. Even extending the range another 100 cm^{-1} includes only a band at $790 \mathrm{~cm}^{-1}$ which can be discounted since it is not found in the other aromatic NMe_{2} systems. Our calculations again show severe mixing of character. There are two modes computed to be near $950 \mathrm{~cm}^{-1}$. Both show ca. 40% of ring character and 50% of NMe_{2} character. This mixing may well be overestimated. The actual geometry is probably intermediate between that requiring tetrahedral angles

[^6]and that involving a planar skeletal configuration. Mixing would be reduced with a more planar configuration. Only one other a^{\prime} mode, that computed near $1170 \mathrm{~cm}^{-1}$, shows any significant $\mathrm{N}-\mathrm{Me}$ contribution.
In the case of the antisymmetric deformation the calculations again show a strong interaction between the antisymmetric $\mathrm{N}-\mathrm{Me}$ stretch, and HCN angular distortions. The interaction results in considerable mixing and a splitting apart of the two resulting modes to 1173 and $994 \mathrm{~cm}^{-1}$. The observed band is at $1069 \mathrm{~cm}^{-1}$ and we cannot find any second component. The predicted mixing should not be very dependent on the configuration about the nitrogen, as is supported by the calculations with models (i) and (ii), and we are unable to explain this discrepancy. Provided that we are correct in believing that we have not observed this other $a^{\prime \prime}$ component, then the remaining observed characteristic bands are readily correlated with the other two a^{\prime} and the one $a^{\prime \prime}$ modes. All three are best described as CH_{3} rocking or wagging modes, though only the $a^{\prime \prime}$ vibration can reasonably be described as pure. Only $d B$ is not listed by Katritzky and Jones. ${ }^{5}$ They investigated the i.r. spectra only whereas this mode leads to strong Raman rather than strong i.r. bands.
The interpretation of the band near $355 \mathrm{~cm}^{-1}$ is of considerable interest. A very strong, polarised Raman band occurs very near to this frequency in most para-substituted $N N$-dimethylanilines, e.g., $p-\mathrm{Me}_{2} \mathrm{~N}^{-} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CN}$, $358 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{p}) ; p-\mathrm{Me}_{2} \mathrm{~N}^{-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{Me}, 361 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{p}) \text {, and }}$ $p-\mathrm{Me}_{2} \mathrm{~N}^{-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CHO}, 357 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{p}) .{ }^{12}}$
The frequency is changed drastically in the NHMe systems and in 0 - and m - $N N$-dimethyltoluidines which suggests that it is a mixed NMe_{2} and aromatic ring mode. This is in agreement with the calculations. Model (ii) and model (iii) show it to be largely a $\delta(\mathrm{CNC})$ mode, but in model (i) the frequency decreases by 20% showing a sharp change in character.
The major interest in this $\delta(\mathrm{CNC})$ mode arises from the dependence of its frequency on the angle between the planes defined by the aromatic ring and that of the NC_{2} of the dimethylamino-entity. Comparison of the calculations of models (i) and (iii) [or (ii)] indicates that the frequency should rise with loss of planarity. $N N$ -Dimethylamino- p-nitrobenzene is known to be almost planar in the crystal phase. The only strong Raman band between 460 and $200 \mathrm{~cm}^{-1}$ is at $320 \mathrm{~cm}^{-1} .{ }^{12}$ A band occurs near this frequency in p-chloronitrobenzene so a possibility exists that the mode is associated in part with the aromatic NO_{2} component. Nevertheless it is clear that the frequency in question must be close to $320 \mathrm{~cm}^{-1}$.
The observed decrease in frequency on going from $\mathrm{Me}_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CN}$ to $\mathrm{Me}_{2} \mathrm{~N}^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}$ is half of that predicted for a change from tetrahedral angles to planar configuration. Provided that the force constants for the angular deformations do not change drastically in going from one to the other of these configurations, it seems reasonable to deduce that the angle between the ring -N and the $\mathrm{N}-\mathrm{C}_{2}$ plane is between 20° and 40° ($64^{\circ} 44^{\prime}$ for tetrahedral angles).

It should be noted that C_{s} symmetry has been assumed, but even if the symmetry of the ring $-\mathrm{NC}_{2}$ system is lower then the coupling between the NMe_{2} modes and the CN-ring, N -ring stretch, and immediately adjacent ring angle deformation modes, will be little affected. This follows since the relative directions of the distortion vectors are insignificantly altered.
The discrepancy between the observed and calculated frequencies (planar configuration) for the p-cyanocompound must be due to inadequacies in the force field. Actually the aromatic and dimethylamino modes are more mixed for the planar case than for model (iii). Any changes in the force field made in order to merge the observed and calculated frequencies would be open to doubt. Nevertheless the main arguments presented for a non-planar configuration, in other than the p-nitrocompound, hold. Unfortunately this uncertainty precludes any chance of being more precise as to the dihedral angle.
Of the characteristic aromatic modes listed by Randle and Whiffen ${ }^{30}$ for para-substituted benzenes the three highest ring modes near 1610,1580 , and $1510 \mathrm{~cm}^{-1}$ are easily identified as 1602,1560 , and $1528 \mathrm{~cm}^{-1}$ respectively. Other characteristic bands listed by them are observed by us at 1172,820 , and $654 \mathrm{~cm}^{-1}$. The band at $1007 \mathrm{~cm}^{-1}$ is surprisingly weak in absorption. The other aromatic modes above $400 \mathrm{~cm}^{-1}$, of which many are of a highly mixed character and involve substituent motions, are in the ranges listed by GarrigouLagrange, Lebas, and Josien. ${ }^{22}$ The lower-frequency modes are very mixed in character and the interested reader is referred to the potential energy distribution in Table 4 in lieu of further discussion.
Characteristic Frequencies of the Methylamino-group.As indicated in Table 5 we have noted five characteristic bands in the range $1350-1000 \mathrm{~cm}^{-1}$. If the CH stretching vibrations, the $\delta \mathrm{CH}$ vibrations, and the torsion are excluded, seven modes are expected for a MeNH-X system. The $\delta C N C$ vibration must be below $500 \mathrm{~cm}^{-1}$. This suggests that the observed bands should be correlated with the methyl rocking modes (degenerate for $C_{3 v}$ symmetry), the two CN stretches and the two $\delta \mathrm{NH}$ modes. Previous studies have found the $\delta \mathrm{NH}$ modes to be elusive but Hadzi and Skrbljak ${ }^{31}$ have presented evidence for one of these modes to be near $1500 \mathrm{~cm}^{-1}$. They failed to observe the second $\delta \mathrm{NH}$ mode but expressed the belief that it must be below $800 \mathrm{~cm}^{-1}$. If all the bands observed in the present work are genuine fundamentals then the deductions or assumptions of Hadzi and Škrbljak must be modified. Katritzky and Jones ${ }^{5}$ located only four characteristic bands in this region, noting only one of the close pair $m C$ and $m D$. On the basis of the present evidence we can only note the existence of the extra band and point out the problems.
[1/2510 Received, 29th, December, 1971]

[^7]
[^0]: \dagger Part I, A. Finch, I. J. Hyams, and D. Steele, J. Mol. Spectroscopy, 1965, 16, 103.
 ${ }^{1}$ R. D. Hill and G. D. Meakins, J. Chem. Soc., 1958, 760.
 ${ }^{2}$ J. T. Braunholtz, E. A. V. Ebsworth, F. G. Mann, and N. Sheppard, J. Chem. Soc., 1958, 2780.

[^1]: ${ }^{3}$ W. B. Wright, J. Org. Chem., 1959, 24, 1362.
 ${ }^{4}$ L. J. Bellamy, 'Advances in Infrared Group Frequencies,' Methuen, London, 1968 , p. 9 et seq.

 5 A. R. Katritzky and R. A. Jones, J. Chem. Soc., 1959, 3674.
 ${ }^{6}$ F. Ritschl and G. Künkel, Z. phys. Chem., 1965, 47, 129.

[^2]: ${ }^{10}$ D. G. Lister and J. K. Tyler, Chem. Comm., 1966, 152.
 ${ }^{11}$ J. C. Brand, D. R. Williams, and T. J. Cook, J. Mol. Spectroscopy, 1966, 20, 193.
 ${ }^{12} \mathrm{~K}$. Radcliffe and D. Steele, to be published.
 ${ }^{13}$ D. Steele, J. Mol. Spectroscopy, 1965, 15, 333.

[^3]: 14 J. C. Duinker, Thesis, Amsterdam, 1964.
 15 K. Radcliffe and D. Steele, Spectrochim. Acta, 1969, 25, A, 597.

 16 A. Finch, I. J. Hyams, and D. Steele, J. Mol. Spectroscopy, 1965, 16, 103.
 ${ }^{17}$ W. T. King and B. Crawford, J. Mol. Spectroscopy, 1960, 5. 421 .
 ${ }_{18}$ R. P. Bell, Trans. Faraday Soc., 1945, 41, 293.

[^4]: ${ }^{23}$ D. H. Whiffen, Spectrochim. Acta, 1957, 7, 253.
 ${ }_{24}$ C. Garrigou-Lagrange, Thesis, Bordeaux, 1962.
 ${ }^{25}$ J. Kahane-Paillous, J. Chim. phys., 1960, 57, 580.

[^5]: ${ }^{26}$ R. J. Jakobsen, Spectrochim. Acta, 1965, 21, 127.
 27 J. H. S. Green, Spectrochim. Acta, 1961, 17, 607.

[^6]: 29 J. Brandmüller, E. W. Schmid, H. Schrötter, and G. Nonnenmacher, Spectrochim. Acta, 1961, 17, 523.

[^7]: ${ }^{30}$ R. R. Randle and D. H. Whiffen, ' Report on the Molecular Spectroscopy Conference,' London, 1954, p. 111, published by the Institute of Petroleum, London, 1955.
 ${ }^{31}$ D. Hadzi and M. Škrbljak, J. Chem. Soc., 1957, 843.

